环球快讯:玩转Matplotlib的十个高级技巧

DeepHub IMBA   2023-07-03 10:15:45

Matplotlib是Python中流行的数据可视化库,仅使用简单的几行代码就可以生成图表。但是默认的方法是生成的图表很简单,如果想增强数据演示的影响和清晰度,可以试试本文总结的10个高级技巧,这些技巧可以将可视化提升到一个新的水平:


(资料图片仅供参考)

1、rcParams

rcParams字典。它包含了用于创建图形的默认样式的所有Matplotlib设置。你可以直接从matplotlib命名空间导入它:

from matplotlib import rcParams >>> rcParams ... "axes.grid": False, "axes.grid.axis": "both", "axes.grid.which": "major", "axes.labelcolor": "black", "axes.labelpad": 4.0, "axes.labelsize": "medium", "axes.labelweight": "normal", "axes.linewidth": 0.8, ...  rcParams["figure.figsize"] = 8, 6 rcParams["legend.fontsize"] = "large" rcParams["xtick.major.size"] = 4 rcParams["xtick.minor.size"] = 1

这时所有的Matplotlib设置,如果你想修改任何的Matplotlib参数,直接修改这个字典就可以了,你甚至可以将他序列化到本地,然后在其他项目中直接加载,这样你的每一个Matplotlib实例使用的都是相同的配置了。

还可以调用PyPlot的rcdefaults函数,它会将所有参数重置成默认值。

plt.rcdefaults()
2、get_* functions

在底层,Matplotlib是完全面向对象的。

图片

上图中看到的每个单独的组件都是作为一个单独的类实现的。它们都继承自基类Matplotlib Artist。

但是类太多,并且每个类的参数都不一样这会给使用带来很大的不方便,所以Matplotlib定制了有许多以get_前缀开头的函数,可以直接创建图形中的组件。下面是一个例子:

fig, ax = plt.subplots()  >>> [func for func in dir(ax) if func.startswith("get")]  ["get_adjustable",  "get_label",  "get_legend",  "get_legend_handles_labels",  "get_lines",  "get_navigate",  "get_title",  "get_transform",  "get_xmajorticklabels",  "get_xminorticklabels",  "get_xscale",  "get_xticklabels",  "get_zorder"]

假设我们想自定义一个图形的坐标:

x = np.linspace(0, 2, 100)  fig, ax = plt.subplots() # Create a figure and an axes.  l1 = ax.plot(x, x, label="linear") l2 = ax.plot(x, x ** 2, label="quadratic") l3 = ax.plot(x, x ** 3, label="cubic")  ax.set_title("Simple Plot")  plt.show()

图片

这很简单,只需在axes对象上调用get_xticklabels,就可以得到Matplotlib Text实例的列表:

>>> ax.get_xticklabels()  [Text(0, 0, "Ideal"),  Text(1, 0, "Premium"),  Text(2, 0, "Very Good"),  Text(3, 0, "Good"),  Text(4, 0, "Fair")]

还可以使用get_xticklines调整刻度线,或者使用get_xticks调整刻度的位置。

已经获得了对象,下面就可以进行调整了

3、get / setp

调用plt.getp函数,可以查看它当前具有的参数。例如,假设我们想要样式化下面图的l2:

x = np.linspace(0, 2, 100)  fig, ax = plt.subplots() # Create a figure and an axes.  l1 = ax.plot(x, x, label="linear") l2 = ax.plot(x, x ** 2, label="quadratic") l3 = ax.plot(x, x ** 3, label="cubic")  ax.set_title("Simple Plot")  plt.show()

图片

这个方法返回了图表的所有属性

>>> plt.getp(l2)    ...    drawstyle or ds = default    figure = Figure(640x480)    linestyle or ls = -    linewidth or lw = 1.5    marker = None    markeredgecolor or mec = #ff7f0e    markeredgewidth or mew = 1.0    markerfacecolor or mfc = #ff7f0e    markerfacecoloralt or mfcalt = none    zorder = 2    ...

而plt.setp可以更改属性在没有任何参数的对象上调用this会打印出该对象可以接受的属性值:

>>> plt.setp(l2)  ...  linestyle or ls: {"-", "--", "-.", ":", "", (offset, on-off-seq), ...}  linewidth or lw: float  sketch_params: (scale: float, length: float, randomness: float)  snap: bool or None  zorder: float  ...

要打印单个属性的可能值,可以将属性的名称作为字符串输入setp:

>>> plt.setp(l2, "linestyle") linestyle: {"-", "--", "-.", ":", "", (offset, on-off-seq), ...}

修改属性的方法如下:

>>> plt.setp(l2, linestyle="-.", lw=5, color="red", alpha=0.5) [None, None, None, None]

要查看更改后的当前图形,只需在图形对象上调用get_figure:

fig.get_figure()

图片

第二行的样式已经变了

4、Legends

Legends可以方便的告诉我们图中每个组件的含义,默认是这样显示的:

x = np.linspace(0, 2, 100)  fig, ax = plt.subplots() # Create a figure and an axes.  l1 = ax.plot(x, x, label="linear") l2 = ax.plot(x, x ** 2, label="quadratic") l3 = ax.plot(x, x ** 3, label="cubic")  ax.set_title("Simple Plot")  ax.legend()  plt.show()

图片

我们可以调整他的参数,例如:

图例的位置、字体属性、大小,颜色,样式、图例中的列数,等等

可以在创建前设置,也可以在创建后使用get_legend提取,并使用getp、setp函数。

5、cycler

你有没有想过Matplotlib是如何自己改变颜色或循环不同风格的?

在底层,Matplotlib使用名为Cyclers的Python内置对象:

from cycler import cycler  c1 = cycler(arg1=[1, 2, 3, 4]) >>> c1

图片

这个循环函数接受任何键值参数并创建一个字典列表:

c2 = cycler(arg2=list("rgba"))  for i in c2:    print(i)  ------------------------------  {"arg2": "r"} {"arg2": "g"} {"arg2": "b"} {"arg2": "a"}

还可以将多个循环器与“plus”和“multiply”操作符组合起来,这样可以获得索引到索引或穷举的参数组合:

for i in c1 + c2:    print(i)  --------------------------------  {"arg1": 1, "arg2": "r"} {"arg1": 2, "arg2": "g"} {"arg1": 3, "arg2": "b"} {"arg1": 4, "arg2": "a"}

将这个自定义循环器并将其传递给Matplotlib,就可以定制样式。下面,我们创建四种不同的线条样式,允许Matplotlib循环使用不同的线条颜色,样式和大小:

line_prop_cycler = (    cycler(color=list("rgcy"))    + cycler(ls=["-", "--", "-.", ":"])    + cycler(lw=[3, 6, 9, 12]) )

可以使用axes对象的set_prop_cycle函数将这个自定义循环器传递给绘图:

x = np.linspace(0, 2 * np.pi, 50) offsets = np.linspace(0, 2 * np.pi, 4, endpoint=False) yy = np.transpose([np.sin(x + phi) for phi in offsets])  fig, ax = plt.subplots(figsize=(8, 4))  ax.set_prop_cycle(line_prop_cycler) # Set propcycle before plotting ax.plot(x, yy)  plt.show();

图片

rcParams字典中默认设置如下:

rcParams["axes.prop_cycle"]

图片

我们可以直接修改

6、tick_params

轴刻度应该准确地传达数据点及其单位的最小值和最大值,并显示几个关键的检查点,以便在不同的绘图部分之间进行比较。

大多数tick属性可以使用axes对象的tick_params函数来控制。以下是文档中的例子:

>>> ax.tick_params()  Parameters ---------- axis : {"x", "y", "both"}, default: "both"    The axis to which the parameters are applied. which : {"major", "minor", "both"}, default: "major"    The group of ticks to which the parameters are applied. reset : bool, default: False    Whether to reset the ticks to defaults before updating them.  Other Parameters ---------------- direction : {"in", "out", "inout"}    Puts ticks inside the axes, outside the axes, or both. length : float    Tick length in points. width : float    Tick width in points. color : color    Tick color.

首先应该指定的两个参数是axis和which。这些参数将应用于X或Y轴刻度,以及最小和最大刻度。

大多数时候,在Matplotlib中不会看到小刻度。如果需要可以使用axes对象上的minortics_on函数:

fig, ax = plt.subplots(figsize=(3, 2))  >>> ax.minorticks_on()
7、Tickers

如果不像自定义tick参数(因为很麻烦)。可以使用许多内置的Matplotlib的“主题”集合(称为tickers)。

from matplotlib import ticker dir(ticker) ["AutoLocator",  "AutoMinorLocator",  "EngFormatter",  "FixedFormatter",  "FixedLocator",  "FormatStrFormatter",  "Formatter",  "FuncFormatter",  "IndexFormatter",  "IndexLocator",  "Integral",  "LinearLocator", ]

在ticker模块下有许多这样的子模块。一般情况下标题中带有Locator的控件控制刻度的位置。而Formatters 则表示标签的样式。选择好后可以使用下面的方式进行设置:

from matplotlib.ticker import EngFormatter  ax.xaxis.set_major_formatter(EngFormatter())

使用axes对象的xaxis或yaxis属性,调用set_major(minor)_formatter(locator)函数,并传入类名。

8、grid

自定义网格线可以突出数据范围。在Matplotlib中,可以使用轴线对象的网格函数创建和自定义网格。下面是一个垂直网格的例子:

fig, ax = plt.subplots()  ax.grid(axis="x", linestyle=":", lw=3, color="r")
9、bar_label

条形图在数据分析中很常见。它们最重要的地方就是每个条的高度,条形标签可以突出每个条的显示。

bar_label函数接受一个BarContainer对象作为参数,并自动标注每个bar的高度。

下面是Seaborn的一个简单的计数图:

import seaborn as sns  diamonds = sns.load_dataset("diamonds")  ax = sns.countplot(diamonds["cut"])

每次使用Seaborn或ax.bar等函数创建barplot时,BarContainer对象都会被添加到图中。可以使用axes对象的containers属性来检索这个容器对象:

ax.containers []

在上面的列表中有一个BarContainer对象有5个bar。我们只需在创建了plot之后将这个对象传递给bar_label:

ax = sns.countplot(diamonds["cut"]) ax.bar_label(ax.containers[0], padding=1) ax.set_ylim(0, 25000) plt.show();
10、zorder

当有很多图的时候,显示顺序是非常重要的。你需要确保在画布上以适当的顺序绘制每个图形,就需要zorder参数。

下面,我们用不同的zorders创建了三行:

x = np.linspace(0, 7.5, 100)  plt.plot(x, np.sin(x), label="zorder=2", zorder=2) # bottom plt.plot(x, np.sin(x + 0.5), label="zorder=3", zorder=3) plt.axhline(0, label="zorder=2.5", color="lightgrey", zorder=2.5)  plt.title("Custom order of elements")  l = plt.legend(loc="upper right") l.set_zorder(2.5) # legend between blue and orange line  plt.show()

可以看到zorder越大,就会在最上方显示,覆盖掉小的组件。

总结

Matplotlib在2023年6月的下载量超过3000万,几乎是其最大竞争对手Plotly的4倍。Matplotlib的成功不仅仅在于它的简单(只需要几行代码就能生成简单的图形),还在于他的功能强大,但是要使用这些强大的功能就需要使用他的高级功能,但是这些高级功能往往需要比较复杂的配置或者参数,需要我们浏览官方的文档。所以才出现了seaborn,他将Matplotlib进行了整合不仅简单而且好看。

但是有时我们需要更深入的定制功能,seaborn也许还达不到我们的目标,我们只能自己定义的参数,本文总结的是个高级技巧可以轻松的帮你完整自定义Matplotlib的任务。